Speaker wire is a passive electrical component described by three properties which determine its performance: resistance, capacitance, and inductance. A theoretically perfect wire has no resistance, capacitance, or inductance. The shorter a wire, the closer it comes to this, because resistance increases with the length of the conductor (except superconductors). The wire's resistance has the greatest effect on its performance.[1] The capacitance and inductance of the wire has less effect because they are insignificant relative to the capacitance and inductance of the loudspeaker. Larger conductors (smaller wire gauge) have less resistance but increased skin effect. As long as speaker wire resistance is kept to less than 5% of the speaker's impedance, the conductor will be adequate for home use.
Speaker wires are selected based on quality of construction, price, aesthetic purpose, and convenience. Stranded wire is more flexible than solid wire, and is suitable for movable equipment. For a wire that will be exposed rather than run within walls, under floor coverings, or behind moldings (such as in a home), appearance may be a subjective benefit, but it is irrelevant to electrical characteristics. Better purification of oxidizing materials such as copper is said to result in more consistent conductive properties throughout the length of the wire, but this is a non-issue in terms of its effect on sound quality. Better jacketing may be thicker or tougher, less chemically reactive with the conductor, less likely to tangle and easier to pull through a group of other wires, or may incorporate a number of shielding techniques for non-domestic uses.
Even with poor-quality wire, an audible degradation of sound may not exist. Many supposedly audible differences in speaker wire can be attributed to listener bias or the placebo effect. Listener bias is enhanced in no small part by the popular manufacturers' practice of making claims about their products either with no valid engineering or scientific basis, or of no real-world significance. Many manufacturers catering to audiophiles (as well as those supplying less expensive retail markets) also make unmeasurable, if poetic, claims about their wire sounding open, dynamic, or smooth. To justify these claims, many cite electrical properties such as skin effect, characteristic impedance of the cable, or resonance, which are generally little understood by consumers. None of these has any measurable effect at audio frequencies, though each matters at radio frequencies.[2]
[edit] ResistanceResistance is by far the most important specification of speaker wire. Low-resistance speaker wire allows more of the amplifier's power to energize the loudspeaker's voice coil. The shorter the cable and the greater the conductor's cross-sectional area, the lower its resistance. Depending on the hearing ability of the listener, this resistance begins to have an audible effect when the resistance exceeds 5% of the speaker's impedance.
A speaker wire’s impedance takes into account the wire’s resistance, the wire’s path, and the dielectric properties of local insulators. The latter two factors also determine the wire's frequency response. The lower the impedance of the speaker, the greater a significance the speaker wire's resistance will have.
[edit] Wire gaugeThicker wires reduce resistance. The resistance of 16-gauge or heavier speaker connection cable has no detectable effect in runs of 50 feet (15 meters) or less in standard domestic loudspeaker connections for a typical 8 ohm speaker.[3] As speaker resistance drops, lower gauge (heavier) wire is needed to prevent degradation to damping factor—a measure of the amplifier's control over the position of the voice coil.
Insulation thickness or type also has no audible effect as long as the insulation is of good quality and does not chemically react with the wire itself (poor-quality insulation has occasionally been found to accelerate oxidation of the copper conductor, increasing resistance over time). High-power in-car audio systems using 2-ohm speaker circuits require thicker wire than 4 to 8-ohm home audio applications.
Most consumer applications use two conductor wire. A common rule of thumb is that the resistance of the speaker wire should not exceed 5% of the rated impedance of the system. The table below shows recommended lengths based on this guideline:
Maximum wire lengths for two conductor copper wire[3] Wire size 2 Ω load 4 Ω load 6 Ω load 8 Ω load
22 AWG (0.326 mm2) 3 ft (0.9 m) 6 ft (1.8 m) 9 ft (2.7 m) 12 ft (3.6 m)
20 AWG (0.518 mm2) 5 ft (1.5 m) 10 ft (3 m) 15 ft (4.5 m) 20 ft (6 m)
18 AWG (0.823 mm2) 8 ft (2.4 m) 16 ft (4.9 m) 24 ft (7.3 m) 32 ft (9.7 m)
16 AWG (1.31 mm2) 12 ft (3.6 m) 24 ft (7.3 m) 36 ft (11 m) 48 ft (15 m)
14 AWG (2.08 mm2) 20 ft (6.1 m) 40 ft (12 m) 60 ft (18 m)* 80 ft (24 m)*
12 AWG (3.31 mm2) 30 ft (9.1 m) 60 ft (18 m)* 90 ft (27 m)* 120 ft (36 m)*
10 AWG (5.26 mm2) 50 ft (15 m) 100 ft (30 m)* 150 ft (46 m)* 200 ft (61 m)*
* While in theory heavier wire can have longer runs, recommended household audio lengths should not exceed 50 feet (15 m).[3]
Speaker wires are selected based on quality of construction, price, aesthetic purpose, and convenience. Stranded wire is more flexible than solid wire, and is suitable for movable equipment. For a wire that will be exposed rather than run within walls, under floor coverings, or behind moldings (such as in a home), appearance may be a subjective benefit, but it is irrelevant to electrical characteristics. Better purification of oxidizing materials such as copper is said to result in more consistent conductive properties throughout the length of the wire, but this is a non-issue in terms of its effect on sound quality. Better jacketing may be thicker or tougher, less chemically reactive with the conductor, less likely to tangle and easier to pull through a group of other wires, or may incorporate a number of shielding techniques for non-domestic uses.
Even with poor-quality wire, an audible degradation of sound may not exist. Many supposedly audible differences in speaker wire can be attributed to listener bias or the placebo effect. Listener bias is enhanced in no small part by the popular manufacturers' practice of making claims about their products either with no valid engineering or scientific basis, or of no real-world significance. Many manufacturers catering to audiophiles (as well as those supplying less expensive retail markets) also make unmeasurable, if poetic, claims about their wire sounding open, dynamic, or smooth. To justify these claims, many cite electrical properties such as skin effect, characteristic impedance of the cable, or resonance, which are generally little understood by consumers. None of these has any measurable effect at audio frequencies, though each matters at radio frequencies.[2]
[edit] ResistanceResistance is by far the most important specification of speaker wire. Low-resistance speaker wire allows more of the amplifier's power to energize the loudspeaker's voice coil. The shorter the cable and the greater the conductor's cross-sectional area, the lower its resistance. Depending on the hearing ability of the listener, this resistance begins to have an audible effect when the resistance exceeds 5% of the speaker's impedance.
A speaker wire’s impedance takes into account the wire’s resistance, the wire’s path, and the dielectric properties of local insulators. The latter two factors also determine the wire's frequency response. The lower the impedance of the speaker, the greater a significance the speaker wire's resistance will have.
[edit] Wire gaugeThicker wires reduce resistance. The resistance of 16-gauge or heavier speaker connection cable has no detectable effect in runs of 50 feet (15 meters) or less in standard domestic loudspeaker connections for a typical 8 ohm speaker.[3] As speaker resistance drops, lower gauge (heavier) wire is needed to prevent degradation to damping factor—a measure of the amplifier's control over the position of the voice coil.
Insulation thickness or type also has no audible effect as long as the insulation is of good quality and does not chemically react with the wire itself (poor-quality insulation has occasionally been found to accelerate oxidation of the copper conductor, increasing resistance over time). High-power in-car audio systems using 2-ohm speaker circuits require thicker wire than 4 to 8-ohm home audio applications.
Most consumer applications use two conductor wire. A common rule of thumb is that the resistance of the speaker wire should not exceed 5% of the rated impedance of the system. The table below shows recommended lengths based on this guideline:
Maximum wire lengths for two conductor copper wire[3] Wire size 2 Ω load 4 Ω load 6 Ω load 8 Ω load
22 AWG (0.326 mm2) 3 ft (0.9 m) 6 ft (1.8 m) 9 ft (2.7 m) 12 ft (3.6 m)
20 AWG (0.518 mm2) 5 ft (1.5 m) 10 ft (3 m) 15 ft (4.5 m) 20 ft (6 m)
18 AWG (0.823 mm2) 8 ft (2.4 m) 16 ft (4.9 m) 24 ft (7.3 m) 32 ft (9.7 m)
16 AWG (1.31 mm2) 12 ft (3.6 m) 24 ft (7.3 m) 36 ft (11 m) 48 ft (15 m)
14 AWG (2.08 mm2) 20 ft (6.1 m) 40 ft (12 m) 60 ft (18 m)* 80 ft (24 m)*
12 AWG (3.31 mm2) 30 ft (9.1 m) 60 ft (18 m)* 90 ft (27 m)* 120 ft (36 m)*
10 AWG (5.26 mm2) 50 ft (15 m) 100 ft (30 m)* 150 ft (46 m)* 200 ft (61 m)*
* While in theory heavier wire can have longer runs, recommended household audio lengths should not exceed 50 feet (15 m).[3]