That's just silly, if you don't even consider the difference.
"4K projectors using either the 4K DLP chip or the 4K-enhanced 3LCD process will accept native 4K signals and then apply some extensive video processing on these signals to prepare them for output to their non-native DLP or 3LCD imaging devices. The difference is that TI's 4K UHD process produces independent single-pixel structures, whereas the 3LCD process does not.
Practically speaking, the most obvious difference between the 4K DLP and 4K-enhanced 3LCD projectors is apparent resolution. The 4K-enhanced 3LCD projectors from Epson and JVC (those currently on the market at any rate) use native HD 1080p chips which are 1920x1080 in physical resolution. Resolution enhancement is achieved by projecting a 1920x1080 image on the first scan, then on the next refresh of the chips a second 1920x1080 image is off-shifted diagonally and overlaid onto the first scan. The total number of addressable pixels in this process is (1920x1080) x 2 = 4.15 million, which is half of the 8.3 million in a native 4K signal.
The 4K DLP chip starts with double the resolution of the 3LCD devices. It has a total of 2716x1528 mirrors. Through some proprietary video processing it is able to deliver two discrete pixels for each mirror. When using this chip in the pixel-shifting process, it delivers double the number of pixels in each refresh compared to the 3LCD projectors. The total number of addressable pixels in this process is (2716x1528) x 2 = 8.3 million, or the same as a native 4K signal. The pixels have been reformulated through video processing to map the native 4K signal information onto this pixel shifted delivery mechanism.
So what do they look like?
The result of both of these processes, as far as the eye perceives, is substantially enhanced picture resolution compared to standard HD 1080p. As far as 3LCD is concerned, though the math says it is half the number of addressable pixels compared to native 4K, from a typical viewing distance the eye will perceive video material displayed on 4K-enhanced 3LCD projectors as much closer to native 4K than 1080p--subjectively the picture does not look like it is "half way" in between 1080p and 4K as the math would suggest. It looks more like it is about 90% native 4K, at least with video subject matter. The bottom line is that when viewing video material from normal viewing distances it will be difficult for most consumers to tell the difference in resolution between a picture produced by a projector using native 4K chips and one using the 3LCD pixel-shift technology.
However, when you switch to something other than video you get a different impression. For example, when you are projecting high resolution graphics or densely packed financial spreadsheets in small fonts, the latent resolution strength of the 4K DLP chip compared to 3LCD pixel-shift becomes much more apparent. When viewing this type of subject matter on 3LCD pixel-shifted projectors, you may tend to see moire patterns in complex graphics, or soft, imprecise resolution of the serifs on small text on a spreadsheet. These details are more acutely resolved with native 4K projectors, or with projectors using the new 4K DLP chip.
Now, with the new 4K DLP chip, the math says that since the physical resolution is doubled as compared to 3LCD, that should push the subjective results on the screen from a perceived (say) 90% of 4K to a potential of 95% 4K. However, once again the math is misleading. This is not what happens. The detail resolution produced by the 4K DLP chip is for all practical purposes indistinguishable from pure native 4K, even when examined from very close up. The ultimate test of this is the display of a 4K resolution 1-pixel line test pattern which contains alternating black and white lines that are each one pixel wide. When viewing this test pattern on a projector using the 4K DLP chip, each line is clean and clearly defined, and you see distinct pixel definition when examining it up close. It is not possible to achieve this level of precision using the pixel shift technology with standard HD 1080p chips.
Therefore, despite the fact that the 4K DLP chip itself has 4.15 million mirrors instead of 8.3 million, we have no problem categorizing the 4K projectors using this chip as native 4K resolution based on the fact that they can display a clean 1-pixel line test pattern. No native 4K projector can do any better. Practically speaking, the number of mirrors on the chip is irrelevant if it can put 8.3 million discrete pixels on the screen and fully resolve a 4K 1-pixel line pattern."
http://www.projectorcentral.com/4k-dlp-projectors.htm